
WSRL-GD-02/91 . AR-006-485

AD-A236 825

TURBO PASCAL/GEM SOFTWARE INTERFACE
FOR SCIENTIFIC GRAPH PREPARATION

R.M. THAMM, D.A. GREEN and O.M. WILLIAMS

GUIDED WEAPONS DIVISION
WEAPONS SYSTEMS RESEARCH LABORATORY

Approved for Public Release.

APRIL 1991

D DEPARTMENT OF DEFENCE
DSTOA DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

•1 91-02379
fIIIElEi

UNCLASSIFIED

DSTO
jAUSLI iTLobj IAi "

GENERAL DOCUMENT
WSRL-GD-0/91

TURBO PASCAL/GEM SOFTWARE INTERFACE
FOR SCIENTIFIC GRAPH PREPARATION

R.M. Thamm, D.A. Green and O.M. Williams

ABSTRACT(U)

This document represents a user manual for the Turbo Pascal /GEM software interface that
has been developed recently within Guided Weapons Division. The interface has been
developed primarily to enable Turbo Pascal programmer to replicate their softcopy
graphical output in high quality hardcopy form. The output from the interface is a GEM
file that can be edited as required within either GEM Draw or GEM Artline, prior to
generation of a PostScript file. A number of mathematical procedures have been included
in order to extend the capabilities of Turbo Pascal, together with a useful library of curve
fitting procedures. The interface also incorporates a form filling technique for versatile data
entry atany point within a Turbo Pascal program. A detailed description of all procedures
and functions is included together with thecode and graphical output from a number of test
programs designed to illustrate the capabilities of the interface.

© Commonwealth of Australia

Author's address:

Guided Weapons Division
Weapons Systems Research Laboratory
PO Box 1700, Salisbury
South Australia

Requests to: Chief, Guided Weapons Division

UNCLASSIFIED

WSRL-GD-02/91

Table of Contents

PART I - TURBO PASCAL/GEM INTERFACE

i. INTRODUCTION1

2. HARDWVARE/SOFTWARE REQUIREMENTS

2.1 General
2.2 Memory Configuration...2

.3. HARD DISK INSTALLATION......................................

4. INTERFACE STRUCTURE....................................... 3

4.1 Type Float........................
-1.2 Arrays.
4.3 M athematical library . 5
4.4 Form filling library . 5
4.5 Plot library.
4.5.1 Coordinate systems
41.6 Curve fitting library
.1.6.1 Bezier Curves . 7

PART II - SOFTWARE STRUCTURE

5. U N IT S .

.5.1 Data types and global variables .

6. UNITS AND PROCEDURES. 1(0

6.1 Unit MathLib 1
6.2 U nit PlotLib. 2
6.2.1 Enumerated data types 2
6.2.2 Mandatory Calls 2
6.2.3 Available procedures and functions. 2
6.2.4 Procedure and function headers 12
6.3 Unit Axes 13
6.3.1 Available structures 13
6.3.1.1 Data types.......................
6.3.1.2 Global variables and defaults.................... 1

6.3.2 Available procedures................... 1
6.3.3 Procedure headers.
6.4 Unit Form. 17
6.4.1 Available procedures. 17
6.4.2 Procedure headers. I
6.5 Units Bezier and SBezier . I
6.5.1 Data type
6.5.2 Available procedures . ,
6.5.3 Procedure headers. I
6.6 Unit Smooth. 19

WSRL-GD-02/91

6.6.1 Procedure header. 19
6.7 Unit DSM 19
6.7.1 Available procedures 20
6.7.2 Procedure headers 0
6.8 Unit Coords.
6.8.1 Available procedures 21
6.8.2 Procedure and function headers. 21
6.9 Unit Interp.. 22
6.9.1 Data types and constants 22
6.9.2 Available procedures22
6.-9.3 Procedure headers. 23
6. 10 Unit FloatDef. 23
6;.11I Unit TypeDef. 23
6.11.1 Data types 23
6. 11.2 Global variables. 21
6i.12 Unit Defaults 21

REFERENCES 25

LIST OF APPENDICES

1. 'rest Program: EASYPLT.PAS 27

11. Tes Program: %MULTIPLT.PAS. 29

Ill. 'rest Program: GRAFTEST.PAS. 33

I V. Test Program: TESTDS1%.PAS I5

V. Test Program: TESTMARKER.PAS :17

VI. Trest Program: SMOOTHTEST.PAS 39

VII1. Test Program: FORMTEST.PAS. 40

LIST OF TABLES

IAVAILABLE PROCEDURES AND FUNCTIONS
'2. GLOBAL VARIABLES
:1. DATA TYPES

LIST OF FIGURES

1. TP/GEM coordinate systems

WSRL-GD-02/91

PART I - TURBO PASCAL/GEM INTERFACE

1. INTRODUCTION

With the proliferation of personal computers, scientists and technologists now have unprecedented
access to desktop computing power at a level that just a few years ago would have been ilvil-
able only from central mainframe computers. Most notable is the ready availability of graphic,
procedures within the high level languages Turbo Pascal and Turbo C that considerably enhann,
the visualisation of scientific output by enabling convenient presentation in graphical form. There
has been, however, some lag in the development of software suitable for quality hardcopy produc-
tion. Although graph generation software is available within various commercial packages such as
the GEM software library, it tends to be directed more towards the business user whose interest
lies more in bar and pie charts rather than towards scientists and engineers who tend to have a
considerably greater interest in line graphs.

In this document, we describe a software package that has been developed within Guided Veap,,-
Division for interfacing Turbo Pascal to the GEM software library. Availability of the paclkea.
allows the user to develop and present graphical data in standard softcopy form on ;n IlIM I'(
compatible using Turbo Pascal, and at the same time to produce an output tile written in t;I'Nl
format. This file acts as the input to either GEM Draw or GEM Artline. thus giving the tsor th,
capability for editing Turbo Pascal generated graphical data in such a way as to produce llardcop
output in publication quality form, incorporating lettering as required in a wide variety of foult, a
Well as whatever artistic touches that the author may desire. Even colour hardcopy reproduuction
is possible through use of an appropriate colour printer. Experience has proven that the TP/GIE.,I
ilteTface described herein provides an effective link between scientific programming/graphical data
analysis and production of publication quality graphical output.

The TP/GEM interface and the essential requirements enabling its utilization are described in
Part I of this document together with a general description of its structure. Part II is wrilt ii

in the form of a user manual and includes a detailed description of all units and procedures. .\

number of test programs designed specifically for demonstrating the capabilities of the interfac
are included in the Appendices. A TP/GEM floppy disc is available on request to all intere,Ted
u.sers within DSTO. For best appreciation of the capabilities of the interface, it is recomndenle,
that potential users request the disc.

2. HARDWARE/SOFTWARE REQUIREMENTS

2.1 General

The interface described in this document has been developed primarily to -,uable Turbo Pascal
programmers to replicate their softcopy graphical output in high quality hardcopy form. The
available procedures, however, cover rather more than the primary graphical output role. A
number of mathematical procedures are included in order to extend the capabilities of Turbo
Pascal, together with a useful library of curve fitting procedures. The interface also incorporates
a form filling technique for versatile data entry at any point within a program.

It is expected that users will be proficient with Turbo Pascal and will be familiar with the
graphical design capabilities of either GEM Draw or (EM Artline. An IBM PC compatible

WSRL-GD-02/91 2

is required. It should have a full complement of memory (640 KBytes) and have an EGA or
VGA Graphics capability. The raw output is in the form of a GEM format file. It is therefore
necessary that sufficient disk storage space be available to store the output files. The user must
have Turbo Pascal 5 or 5.5 installed in order to use the graphics procedures. In order to later
manipulate the graphics produced in GEM format the user must have GEM Artline or GEM
Draw installed and a mouse driver. It is expected that the user has PC or MS-DOS V2.1 or a
later version installed.

2.2 Memory Configuration

Some of the units described in this document use large amounts of main memory. On occasions.
Turbo Pascal will produce the message 'Out of Memory' and not complete compilation. A
number of techniques can be used to resolve this problem :

1. Check that you are compiling to disk rather than memory by pressing Alt-C from the Turbo
Pascal Integrated Development Environment (IDE). The pop-up window has a 'Destination"
option. If this shows 'Memory', then change it to disk.

2. Reduce the memory requirement. This may involve removing all units that are not required
from the Uses clause in your program, or by reducing array sizes.

3. The Turbo Pascal editor can be loaded into extended memory (if installed), saving about
64 KBytes of memory. Consult your Turbo Pascal manual for details on how this may be
achieved.

.4. Try removing memory-resident programs from memory (e.g., Sidekick or other Terminate
and Stay Resident (TSR) programs).

5. Exit from the IDE to DOS. Try compiling using the command line compiler. For example,
try:

>TPC /L GRAFTEST.PAS [ENTER]

where /L indicates 'Link Buffer on Disk', not memory. For other TPC options, type:

>TPC [ENTER]

All the command line options will appear on the screen. Alternatively, consult the Turbo
Pascal manual.

3. HARD DISK INSTALLATION

1. If you haven't already done so, make a backup of the original disk supplied with this package.
The easiest way to do this is to use the DOS diskcopy command (i.e., DISKCOPY A: A:
[ENTER]) and follow the prompts.

2. Exit to DOS and load the supplied disk into the floppy disk drive A:

(a) Change directory to the level above where you want the files to be copied into. For
example, in order to place the files in a directory immediateiy below the ROOT directory,

3 WSRL-GD-02/91

type CD\ [ENTER]. Alternatively, if you prefer to place them in a subdirectory of your

Turbo Pascal directory then type CD\TP [ENTER].

(b) Make a directory into which the supplied files can be copied.
i.e., type: MD PLOT [ENTER].

(c) Now move into your new directory.

i.e., type: CD PLOT [ENTER].

3. Copy the files into the new directory.

i.e., type: COPY A:*.* [ENTER].

4. Copy the Turbo Pascal Graphics and Font files into the new directory. These could be anywhere
on your disk depending on how your Turbo Pascal was installed. For Turbo 5.5 they art-
normally located in the \TP directory. In this case type:

COPY \TP\ * .BGI [ENTER]
COPY \TP\ * .CHR [ENTER]

Note that you may not want to make a copy of these files. If so, you can alternatively load file
PLOTLIB.PAS into your Turbo Pascal editor and locate Procedure ScreenStart (about int

158). In this procedure there is a call to InitGraph in the Graphics library. Enter the narne of
the directory in which the .BGI and .CHR files are located between the null quotes and -ave
the file.

e.g.,
InitGraph(GraphDriver. GraphMode,),

becomes
InitGraph(GraphDriver, GraphMode, 'C:\TP\GRAPHICS'):

Refer to the Turbo Pascal reference manual for details.

5. It is expected that users have already configured Turbo Pascal within their existing systems. A

number of test programs (reproduced in the Appendices) are supplied in order to illustrate the
capabilities of the TP/GEM interface. It is suggested that one of these files be loaded into the
Turbo Pascal editor and compiled. Generally it is necessary to perform a BUILD when using
a unit for the first time; i.e., ALT-C, then B from the Integrated Development Environment.
Alternatively, each unit can be picked up with the editor and compiled separately.

6. Read Section 4.1 before continuing. It is important that the usage of the type Float,
which is an integral part of the TP/GEM software structure, is well understood
before the package can be successfully applied.

4. INTERFACE STRUCTURE

The interface software is supplied on a master diskette in the form of a suite of units, each of which
is comprised of a number of procedures that together define the functional use of the unit. The
units available to be called at the start of the Turbo Pascal program. all of which have a PAS

extension, include:

WSRL-GD-02/91 4

Unit Role

AXES Data types and procedures for drawing axes
BEZIER Bezier curve generation
COORDS Transformations between coordinate systems
DEFAULTS Sample Default unit
DSM Discrete smoothing cubic spline
FLOATDEF Definition of the type Float
FORM Construction of a flexible form filling system
GEMMETA Not intended for general use
INTERP Curve data interpolation and derivatives
MATHLIB Supplementary mathematical library
PLOTLIB Line graph drawing procedures
SBEZIER Smoothed Bezier curve generation
SMOOTH Noisy data smoothing
TYPEDEF Global data types

The above list provides a guide as to the versatility of the interface software. Only the major
units and their general structures are described here. Part II provides a detailed description of
the variables and procedures available to the user. A number of examples of application of the
procedures for producing graphical output appear in the Appendices.

4.1 Type Float

The TP/GEM interface employs the type Float which must be used for all floating point data.
This is particularly important when variables are passed into a TP/GEM function or procedure.
all of which use the type Float. Float is defined in the unit FLOATDEF, the default value being
Single. This value may be modified by the user to either Double or Extended. Examples of
application of Float appear throughout the Appendices.

4.2 Arrays

Pascal does not support variable length arrays. However, Turbo Pascal supports untyped pa-
rameters that can be used to emulate variable length arrays. When passing arrays to procedures
that apply untyped parameters in this way, the following rules must be obeyed:

(a) Always pass the address of the first element of the data you wish to pass.

(b) The array must have elements of the correct type (normally Float).

(c) The length parameter must be correct and less than the specified limit.

For example, in order to pass the data contained in the subarray X[20]..X[40], the user must
specify X[201 as the array parameter and 21 as the length parameter.

The limit on the number of data elements passed in arrays is set by the constant MaxPt (default
= 1200) in the unit TYPEDEF. This can be increased if necessary without increasing the memory
requirements of the package.

The following units set their own limits on the length of arrays passed to them:

t[WSRL-GD-02/91

INTERP This unit defines the constant TNArraySize (default = 201). Since the unit also
declares variables of the type ARRAY[O..TNArraySize] OF Float, altering the
value of TNArraySize will change the memory requirements.

SBEZIER This unit defines the constant InPts (default = 500). Since the unit also declares
variables of the type ARRAY[1..InPts] OF Float, altering the value of InPts will
change the memory requirements of the unit.

SMOOTH The unit SMOOTH defines a constant MaxPt (default = 8192) which must he all
integral power of two, and greater than or equal to (n + 2 * pts) where n and pt.,
are parameters of the procedure SmoothFt. If TYPEDEF.MaxPt is increased. tho
user is advised to check that SMOOTH.MaxPt is still large enough.

4.3 Mvathematical library

The common mathematical functions such as Power. Tan, ArcSin. ArcCos and LoglO that ar,,
not provided within Turbo Pascal are included within the unit MATHILIB. Reciprocal coverI,i,,l
between degree and radian measure is also included, as are functions for determining the lianti-a
and exponent of a floating point number and a procedure for locating array minima and maxilier.

4.4 Form filling library

Unit FORM includes procedures that assist in the versatile entry of constant data into a program.
It is a simple matter to set up a form that is displayed on the monitor and which contains delailk
of all the parameters (String, Integer or Floating Point) that the user may wish to set belore
the program runs. At this stage the user is able to change at will the default values that are,
automatically displayed, without the need to modify the existing code. While not martdator.
usage of unit FORM represents a convenience that becomes quickly apparent when a proir;,
needs to be run many times with different starting parameters.

4.5 Plot library

The units that comprise the plot library - namely, AXES, COORDS and PLOTLIB - represent
the heart of the software interface. It is within these units that the procedures exist for crea il'
the graphical output in the form required by the user, available both on screen and as a G(EM

format output file.

4.5.1 Coordinate systems

The Plot Library employs three different coordinate systems:

World Coordinate Space

This is the user-defined coordinate system. The user specifies a rectangular window within
this space by applying the DefineWorld procedure. Each user-defined window is called a
World and is defined by the lower left (11) and upper right (ur) corners. Only data inside
the window will be plotted. The mapping of a World into the plot box is illustrated
in Figure 1. The user can define many Worlds, thus allowing several sets of data to be
incorporated within the one plot, as illustrated in Appendix II.

(

WSRL-GD-02/91 6

....... - ,- C. ,. -

Nambmld Deviin

cwQadw Spam

J7

Figure 1 TP/GE\M coordinate systems

Normalized Device Coordinate (NDC) Space

This is a standard coordinate system that is used for all internal calculations. Each World
is mapped into the unit square as shown in Figure 1. All curves are clipped into the unit
square. All numbering, labelling and ticking is performed in NDC space.

Device Coordinate Space

Each output device is characterized by its own coordinate space. The TP/GEM package
supports two devices: the screen and the GEM file. The screen coordinate space varies with
the screen type (e.g., EGA or VGA). The output plot resides in a rectangular area. The
plot box is centred in this area, the relative size of the box being set by the ScaleFactor
parameter within the ScreenStart and GEMStart procedures. For the screen case. the
rectangulax area corresponds to the entire screen. For the GEM metafile case, the area
will fit onto an A4 page, the dimensions being set in the ratio 4:3 for the Landscape and
Portrait options and 1:1 for the SquarePage option.

Of prime importance to users is the definition and use of Worlds. A World is defined using
the DefineWorld procedure. The user specifies the lower left and upper right corners of this
World. DefineWorld returns an integer value which represents the World. This value should
be passed to all the axes drawing, labelling and plotting procedures. as illustrated within the
appendices. Most of the procedures in this package require data in the user-defined World
coordinates.

A few procedures require data in NDC coordinates (e.g., PlotDashedLine). The user has
therefore been given access to procedures that allow conversion between the different coordi-
nate systems. An example of the use of NDC coordinates is included in Appendix I1. Some
constants (e.g., TickLen) are defined in pseudo-NDC space. The default tick length of 0.02
means that the tick marks will be sized at 0.02 times the longer side of the plot box.

4.6 Curve fitting library

As a supplement to the plot library, a curve fitting library comprised of the units BEZIER.
SBEZIER, DSM, INTERP and SMOOTH is included for the convenience of the user, As the

7 WSRL-GD-02/91

names suggest, the primary curve data may be manipulated before the output curve is plott,
The data may, for example, be interpolated or smoothed before plotting. Only a few dat,
points may be available, in which case the procedures within BEZIER or SBEZIER mia .,
applied in order to generate smooth connecting curves. The availability of these procedur.,
adds significantly to the versatility and general capability of the TP/GEM interface.

4.6.1 Bezier Curves

GEM Artline supports compound Bezier Curves'. Each segment of a compound Bezier C(Ir ,.
is defined by four points: two endpoints (Xe, Yo) and (x3,y 3) and two control points (xi. ?]I
and (x2, y 2). The parametric equations of a Bezier segment are:

x(t) = Xo(1 - t)3 + , t(1 t) 2 + x2 t2 (1 t) + X3 t3 1I

and

y(t) = yo (l -)3 + yt(1 - t) 2
+ y2 t

2 (1 - t) + y 3 1
3 . 2.

Two units, BEZIER and SBEZIER, have been provided for converting user data into cormlp,-
ite Bezier curves. The advantages of Bezier curves over normal 'curves' composed of stii,,it
line segments are:

i) Beziers are real curves that are not composed of straight line segments.

ii) Compound Bezier Curves are single entities in GEM Artline. Normal segmented t'',
are limited to 100 line segments; curves of more than 100 segments appear to (;1-Nl
Artline as several objects grouped together.

iii) Bezier Curves can be plotted in dashed line form. However, the single entity naturo it,
GEM Artline is then lost.

iv) Bezier curves can be edited with ease in GEM Artline.

Two separate units have been provided for plotting Bezier curves:

(1) The unit BEZIER generates quick curves and requires less memory than the alternaiti\
unit, SBEZIER. BEZIER selects up to 40 of the user-input data points as the endpoitws
of the Bezier segments. Data points that are not chosen as endpoints may not lie on iIh,,
resulting curve. Furthermore, in some cases the resulting curve may not fit the input
data very well, particularly when large curvatures are involved.

(2) The unit SBEZIER is more sophisticated. This unit generates a smoothing spline for the
input data and selects the endpoints for the Bezier segments from the spline. The lletir
segment equations are found by forcing the first and second derivatives of the lezior
curves to match those of the smoothing spline at the segment endpoints. The unit
produces better results than BEZIER but at the expense of greater memory preferen,,
and slower running time. Dashed lines of higher quality (dashes of equal length) arc
generated and several dashed line styles are supported.

4

WSRL-GD-02/91 8

PART II - SOFTWARE STRUCTURE

In this second part, the structure of the TP/GEM interface is detailed. Sufficient information
is given to allow a progammer to interface between Turbo Pascal and GEM and to thereby
produce laser printer output of the graphical data displayed initially on the PC screen.

Examples of programs that usefully illustrate many features of the interface software are
reproduced within the Appendices and are also included on the diskette. Note that some
minor displacements in the positioning of the labels appearing in the raw GEM file output
have been corrected within each of the graphs shown in the Appendices. The GEM colours
(which do not exactly match the Turbo Pascal softcopy colours) have also been set univer-ly
to black (except in the case of the output from SMOOTHTEST.PAS).

5. UNITS

'rie interface structure is divided into a number of units, each of which has a PAS extension. It is
advisable to call the units FLOATDEF and TYPEDEF in all programs. The available units are:

Unit Section Role

AXES 6.3 Data types and procedures for drawing axes
BEZIER 6.5 Bezier curve generation
COORDS 6.8 Transformations between coordinate systems
DEFAULTS 6.12 Sample default unit
DSM 6.7 Discrete smoothing cubic spline
FLOATDEF 6.10 Defiiition of the type Float
FORM 6.1 Constructicn of a flexible form filling system
GEMMETA -- Not intended for general use
INTERP 6.9 Curve data interpolation and derivatives

MATtILIB 6.1 Supplementary mathematical library
PLOTLIB 6.2 Line graph drawing routines
SBEZIER 6.5 Smoothed Bezier curve generation
SMOOTH 6.6 Noisy data smoothing
TYPEDEF 6.11 Global data types

The complete list of available procedures and functions within the units is given in Table I (in
alphabetical order).

5.1 Data types and global variables

The units incorporate a number of global variables, the default values of which can be modified
at any point within the user source code, as illustrated in Appendices I to Ill. Alternatively,
the required changes to the default values can be entered into the unit DEFAULTS.PAS, thus
enabling the TP/GEM interface to be tailored to the user requirements. Note that the units
in which the appropriate global variables are defined must then be called under the USES
heading within DEFAULTS.PAS. The global variables and data types are listed in Tables 2 and
3 respectively.

9 WSRL-GD-02/91

Table 1 AVAILABLE PROCEDURES AND FUNCTIONS

Procedure or Function Unit Procedure or Function U'nit

AdvanceLine Form LogRightAxis Axes
A rc Cos NlathLib LogScale Axes
ArcSin NlatliLib LogXAxis Axes
AxisScale Axes LogYAxis Axes
ClearCoords (oords Mantissa MIath Lii)
CloseForta Formn NameRightAxis Axes
C-ubicSplineFree Interp NameTopAxis A xes
DefineWorld Coords NanmeXAxis Axes
Deg NMatl~ib NameYAxis Axes
Derivative Ititerp NDC (oords
DevCoords (oordk NDCX ('oords
DevX (oords NDCY ((ords
DevY ('oords OpenForm Form
Draw Axes A xes PlotBezier Bezier
Exponent MathIL-ib PlotCurve PlotLib
FindExtrema Mathli ib PlotDashedLine PlotLib
FitCS l)SM PlotEnd PlotLib)
FitDS I)SN PlotMarkers IPlotLib
FitDDS I)SN Power MathL-ib
FitDSns l)SI Rad Mathlib)
Float Iteni iI ,In ScreenStart Plo0tLibR
Genidth ,1I Lib) Second Derivati ve ltterp
GemStart P'lot Li I SetDefaults Defaults
GenirextSett igs P'lot L11) SmoothBezier S lezier
G et Integer Val ue luillil SmootliFt Smooth
G;et RealkValue Iom Stringitem Form
GetStrirmgVahie l"IIITan Nlathl-ib
Integeritern Vl-1r VarLabelRight Axes
LabelRightAxis .\x ("VarLabelTop Axes
LabelXAxis A\Xs WorldX Coords
LabeINYAxis Axe, WorldY Coords
LogIO \lht 111 i b

Table 2 G;LOBAL VARIABLES

Variable nant, -Fvpe Default Unit

Axisllox .\xiOption; FulIBox Axes
. is(,olor z WO RD: Green Axes

AxisTicks I l'ickOption: TwoSidesTicked Axes
DeviceL-ist = umtputleviceslist; - TypeDet
Form('ontrol = INTEGER; 1 Form
LabelMargin = Float; 0.02 Axes
LogTicks = LogTickOption; UnitsTicked Axes
Side = SideType; OutSide Axes
TickLen = Float; 0.02 Axes

WSRL-GD-02/91 10

Table 3 t)A-TA TYPES

Data TYpe Unit Section

AxisOption =(FulIBox. Halfl~ox); Axes 6.3
Float =REAL; FloatDef 6.10

eumFoutType =(Swiss, SwissBold. Dutch. PlotLib 6.2
DutchBold. Charter)

GraphType =(Linear, Log, LogLinear, TypeDef 6.11
LinearLog);

LineType =(Dashed, ShortDashied); PlotLib 6.2
LogTick~ption =(DecadesTicked. UnitsTicked); A xes 6.3
MarkerType =(Dot, Plus. Star, Square. PlotLib 6.2

Cross. lDianion d:
OrientType = (Portrait. LaudScape, PlotLib 6.2

SquarePaige):
Output DevicesList = Set of Output DisplaYvlvpe; TypeDef 6.11
Output DisplayType =(Screen. CernFile): TypeDef 6.11
PlotArray =Array[..Nlax It I of Float; TypeDef 6.11
SideTv pe = (Inside, Out,,ide); Axes 6.11
TickOption = (OneSidel'icked. A xes 6.11

T woS i d esTi cked)
TN Vector =A rray f0..N. \r r vvS ize} DSNI 6. 7

of Float:
\VidthType =(FullWidthI. I lhal th); PlotLib 6.2

2. UNITS AND PROCEDURES

2.1 Unit MathLib

The MathLib unit contains standard inilivinatical procedures that are not supplied within
Turbo Pascal.

Power

Header FUNCTION Po%%r(;t. 1)b Float) :Float;
Purpose Returns the value (d to thle power of b.
Example c :=Power(2.'s):

c will assume the value of 256 or 28.

Tan

Header FUNCTION Tan) x: Float) :Float;
Purpose Returns the tangent of x where x is in radians.
Example c c:= Tan(ir/4);

c will assume the value of 1.0.

11 WSRL-GD-02/91

Arcsin

Header FUNCTION ArcSin(x: Float) : Float:
Purpose : Returns the arcsine of x.
Example c := ArcSin(1/i2);

c will assume the value of 7r/4 radians.

ArcCos

Header : FUNCTION ArcCos(x: Float) : Float;
Purpose : Returns the arccosine of x.
Example : c := ArcCos(v'3/2);

c will assume the value of ir/6 radians.

Rad

Header FUNCTION Rad(x: Float) : Float;
Purpose Converts degrees to radiars.
Example c := Rad(45.0);

c will assume the value of 7r/4 radians.

Deg

Header FUNCTION Deg(x: Float) : Float;
Purpose Converts radians to degrees.
Example c := Deg(3.1416);

c will assume the value of 1800.

LoglO

Header FUNCTION LoglO(x: Float) : Float;
Purpose Returns logl 0 (x).
Example c := Log1O(1000);

c will assume the value of 3.
Exponent

Header : FUNCTION Exponent(x: Float) : Float:
Purpose : Returns the exponent of a floating point number.
Example : c := Exponent(1234.567);

c will assume the value of 3 (i.e., 1234.567 = 1.234567 x 103).
Mantissa

Header : FUNCTION Mantissa(x: Float) : Float;
Purpose : Returns the mantissa of a real number.
Example : c := Mantissa(1234.567);

c will assume the value of 1.234567 (i.e., 1234.567 = 1.234567 x 10).
FindExtrema

Header : PROCEDURE FindExtrema(VAR x; Npts: INTEGER;
VAR MinValue, MaxValue: Float; VAR imin, imax : INTEGER);

Purpose : Finds the minimum and maximum values of an array.
Also returns the index positions where the minima and maxima were found.

Example : FindExtrema(PlotfData, 100, Minimum, Maximum, MinPos, MaxPos):
Returns the maximum and minimum values of the first 100 elements
of the array PlotData. The minimum and maximum values are
located at index positions MinPos and MaxPos respectively.

WSRL-GD-02/91 12

6.2 Unit PlotLib

Unit PlotLib contains line graph drawing procedures to screen and/or to a GEM metafile.

6.2.1 Enumerated data types

OrientType = (Portrait, LandScape, SquarePage);
GemFontType = (Swiss, SwissBold, Dutch, DutchBold, Charter);
LineType = (Dashed, ShortDashed);
WidthType = (FullWidth, HalfWidth);
MarkerType = (Dot, Plus, Star, Square, Cross, Diamond);

6.2.2 Mandatory Calls

The following list includes the mandatory calls for drawing a curve:

ScreenStart/GemStart : Initialise screen or GEM file
DrawAxes . Draws rectangle around graph area
DefineWorld . Define World (user) coordinates
LabelXAxis or LogXAxis(unit Axes) : Draw tick marks and number X Axis
LabelYAxis or LogYAxis(unit Axes) : Draw tick marks and number Y Axis
PlotCurve (or PlotBezier) : Draw a curve
Plot End : Finish plot

6.2.3 Available procedures and functions

GemWidth : Sets line width for Gem polylines
GemStart : Initialises Gem plot le (GEMfile)
GemTextSettings : Sets font size and type for Gem file text
PlotCurve : Plots the contents of an array
PlotDashedLine : Sets the color, dash type and line width
PlotEnd : Called when plot is complete
PlotMarkers : Used to draw data points
ScreenStart : Used to initialise and scale plotting to screer.

6.2.4 Procedure and function headers

Reference should be made to the above enumerated data types.

PROCEDURE GemWidth(LineWidth: INTEGER);

LineWidth : Width of GEM line (default value = 50 (0.5 mm).

PROCEDURE GemStart(FileName : STRING; Orientation : OrientType:

ScaleFactor : Float);

FileName : Name of GEM output file. Call this file from GEM draw
or GEM Artline to access your graphics output.

Orientation : Orientation of output as per type OrientType.
ScaleFactor : Defines the fraction of the available plot dimension

within the plot rectangle.

13 WSRL-GD-02/91

PROCEDURE GemTextSettings (Font : GemFontType; FontSize : INTEGER);

Font : Specifies font type as per typeGemFontType (default = Swiss).
FontSize : Point size for font (default = 17 pt).

PROCEDURE PlotCurve(Color : WORD; NPoints : INTEGER; GraphKind" GraphType:
VAR x, y; World: INTEGER);

Color : Color of plotted curve (standard Turbo Pascal screen colors).
NPoints : Number of points in curve.
GraphKind : (Linear, Linearlog, LogLinear, Log).
x, y : Arrays containing the curve (x, y) coordinates.
World : The World associated with the curve.

PROCEDURE PlotDashedLine(Color: WORD; LineForm : LineType;
DashedWidth : WidthType; xl, yl, x2, y2 : Float);

Color : Color of plotted curve.
LineForm : Dashed or ShortDashed.
DashedWidth : FullWidth or HalfWidth.
xl, yl : One end point of the line (NDC Coordinates).
x2, y2 : Other end point of the line (NDC Coordinates).

PROCEDURE PlotEnd;

PROCEDURE PlotMarkers(Color: WORD; Kind : MarkerType;
Size :. Float; NPts" INTEGER; GraphKind : GraphType; Vat x, y, World INTFGE;EI:

Color : Color of plotted curve.
Kind : Type of marker (see Marker type above).
Size : Size of marker relative to standard (=1) device size.
Npts : Number of markers (or points) to plot.
GraphKind : (Linear, Lnearlog, LogLinear, Log).
x, y : Arrays containing the x and y values of the points to plot.
World : The World associated with the curve.

PROCEDURE ScreenStart(ScaleFactor : Float);

ScaleFactor : Fraction of full screen dimensions allocated for the plot rectangle.

6.3 U nit Axes

Unit Axes contains data types and procedures for drawing axes on graphs. The unit also contains
an autoscaling procedure that may be applied separately to all curve axes.

6.3.1 Available structures

6.3.1.1 Data types

The following descriptive datatypes are used to describe the axes required:

WSRL-GD-02/91 14

TickOption = (OneSideTicked, TwoSidesTicked);
SideType = (Inside, Outside);
LogTickOption = (DecadesTicked, UnitsTicked);
AxisOption = (FullBox, HalfBox);
Array100 = ARRAY[l..100] OF Float;

6.3.1.2 Global variables and defaults

AxisBox : AxisOption; FullBox
AxisColor : WORD; Green
AxisTicks TickOption; OneSide Ticked
LabelMargin : Float; 0.02
LogTicks LogTickOption; Units Ticked
Side : SideType; OutSide
TickLen . Float; 0.02

Note that a grid can be established by setting Side to InSide and TickLen to 1.0. The
width of the grid lines may be set through use of the procedure GEMIVidth, as illustrated
within Appendix III.

6.3.2 Available procedures

AxisScale Provides autoscaled values from specified min and max values.
LabelRightAxis Draws ticks and numbers on the right axis.
LabelXAxis : Draws ticks and numbers on the bottom axis and

optionally draws ticks on the top axis.
LabelYAxis Draws ticks and numbers on the left axis and

optionally draws ticks on the right axis.
LogRightAxis As for LabelRightAxis except with log scale.
LogScale Provides autoscaled logarithmic values from specified

maximum value and required number of decades.
LogXAxis As for LabeIXAxis except with log scale.
LogYAxis As for LabelYAxis except with log scale.
NameRightAxis Writes a name on the right axis.
NameTopAxis Writes a name on the top axis.
NameXAxis Writes a name on the bottom axis.
NameYAxis Writes a name on the left axis.
VarLabelRight Draws user-defined ticks and labels on the right axis.
VarLabelTop Draws user-defined ticks and labels on the top axis.

6.3.3 Procedure headers

PROCEDURE AxisScale(AxisnameStr: STRING; VAR steps : INTEGER;
VAR min, max : Float; VAR Decimals: INTEGER);

AxisnameStr : Identifying name for axis.
Steps : Number of steps required on the axis.
min, max : Minimum and maximum values (input as specified,

output as autoscaled or user-selected).
Decimals Number of displayed decimals.

i & !

15 WSRL-GD-02/91

PROCEDURE LabelRightAxs(LabeColor: Word: Ylntervals, decimals: INTEGER:
World: INTEGER);

LabelColor : Color assigned to the ticks and numbers.
YIntervals : Total intervals between right hand axis ticks.
Decimals : Number of displayed decimals.
World : The world associated with the plotted curve.

PROCEDURE LabelXAxis(LabelColor: WORD; XIntervals, Decimals: INTEGER;
World: INTEGER);

LabelColor : Color assigned to the ticks and numbers.
XIntervals : Total intervals between bottom axis ticks.
Decimals : Number of displayed decimals.
World : The world associated with the plotted curve.

PROCEDURE LabelYAxis(LabelColor : WORD; Ylntervals, Decimals INTEGER:
World : INTEGER);

LabelColor : Color assigned to the ticks and numbers.
Ylntervals Total intervals between left hand axis ticks.
Decimals : Number of displayed decimals.
World : The world associated with the plotted curve.

PROCEDURE LogRightAxis(LabelColor: WORD; World : INTEGER);

LabelColor : Color assigned to the right hand ticks and numbers.
World : The world associated with the plotted curve.

PROCEDURE LogScale(AxisnameStr: STRING; VAR min. max : Float:
NoDecades: INTEGER);

AxisnameStr Identifying name for axis.
min, max Minimum and maximum values

- max is input as specified,
output as autoscaled or user-selected.

- min is calculated from NoDecades and max
NoDecades Number of decades required on log axis.

PROCEDURE LogXAxis(LabelColor: WORD; World: INTEGER),

LabelColor : Color assigned to the bottom axis ticks and numbers.
World : The world associated with the plotted curve.

PROCEDURE LogYAxis(LabelColor: WORD; World: INTEGER);

LabelColor : Color assigned to the left hand axis ticks and numbers.
World : The world associated with the plotted curve.

PROCEDURE NameRightAxis(Color: WORD; YNameStr: STRING);

Color : Color assigned to the right axis name.
YNameStr : Right axis name.

WSRL-GD-02/91 16

PROCEDURE NameTopAxis(Color: WORD; XNameStr: STRING);

Color Color assigned to the top axis name.
XNameStr : Top axis name.

PROCEDURE NameXAxis(Color: WORD; XNameStr: STRING);

Color Color assigned to the bottom axis name.
XNameStr : Bottom axis name.

PROCEDURE NameYAxis(Color: WORD; YNameStr: STRING);

Color Color assigned to the left hand axis name.
YNameStr Left hand axis name.

The following two procedures give the opportunity for user-defined labelling. There can be
cases where an axis needs to be labelled linearly in terms of a primary parameter on one side.
and nonlinearly in terms of a functionally related parameter on the other side, as illustrated in
Appendix It. The user must specify two arrays; MyLabels, for defining the required labels to
be displayed nonlinearly on the axis of interest, and TickPosn, which is derived by converting
the MyLabels values into the corresponding linear parameter values, in accordance with the
required nonlinear functional form. For example, if the primary parameter is wavelength A
to be displayed linearly on the lower x-axis as in the example of Appendix II, and the user
wishes to display the energy

1.240
_ \1A

across the upper x-axis, then the array MyLabels defining the required gradations of E
is formed, followed by the TickPosn array which defines the complementary values of A
obtained from the inverse form of the functional expression (1) above. This example is coded
in Appendix II where it may be noted that both TickPosn and MyLabels are specified as
arrays of Float.

PROCEDURE VarLabelRight(LabelColor : WORD; NTicks : INTEGER;
VAR TickPosn, MyLabels; Decimals : INTEGER; YMin, YMax : Float);

LabelColor : Color of right axis label, ticks and numbers.
NTicks : Number of ticks to display on right axis.
TickPosn : Array of Y coordinates where ticks are to be placed.
MyLabels : Array of labels for tick marks.
Decimals : Number of displayed decimals.
YMin, YMax : Minimum and Maximum values of Y for the right axis.

PROCEDURE VarLabelTop(LabelColor: WORD; NTicks: INTEGER:
VAR TickPosn, MyLabels; Decimals : INTEGER; XMin, XMx : Float);

LabelColor : Color of right axis label, ticks and numbers.
NTicks : Number of ticks to display on right axis.
TickPosn : Array of Y coordinates where ticks are to be placed.
MyLabels : Array of labels for tick marks.
Decimals : Number of displayed decimals.
XMin, XMax : Minimum and Maximum values of X for the top axis.

17 WSRL-GD-02/91

6.4 Unit Form

Unit Form provides procedures for flexible data entry on the same basis as filling out a form. lhe
user constructs the desired layout of the form by application of the available procedures. The
input data may be in the form of strings, integers or floating point numbers. Use of the CURSOR
or ENTER keys allows movement between different fields and gives the opportunity for the user
to change the programmed default data. Data entered in incorrect numeric format is ignored.
The data o the form is accepted when either of the PGDN or ESC keys is pressed. Refer to
Appendix VII for a detailed description of unit Form within the test program FORMTEST.PAS.

6.4.1 Available procedures

AdvanceLine : Inserts a blank line in the form.
CloseForm Indicates that the layout is complete.
Floatltem Places a field for floating point input at the required locationi.
GetintegerValue Inputs an integer.
GetRealValue Inputs a floating point number.
GetStringValue : Inputs a string.
Integerltem : Places a field for an integer input at the required location.
OpenForm Starts construction of the layout.
Stringltem Places a field for a string input at the required location.

6.4.2 Procedure headers

PROCEDURE AdvanceLine;

PROCEDURE CloseForm:

PROCEDURE FloatItem(FloatVal : Float; Decimals: INTEGER; ItemStr : STRING)

FloatVal : Float variable name for the field.
Decimals : Number of displayed decimals.
ItemStr : Prompt associated with the variable name.

PROCEDURE GetIntegerValue (VAR IntegerValue : INTEGER);

IntegerValue : Returns the integer value input at the keyboard.

PROCEDURE GetRealValue (VAR RealValue : Float);

RealValue : Returns the real (or Float) value input at the keyboard.

PROCEDURE GetStringValue (VAR StringVal : STRING);

StringVal : Returns the string input at the keyboard.

PROCEDURE IntegerItem (IntegerVal, Width : INTEGER; ItemStr: STRING):

IntegerVal : Integer variable to be used with this field.
Width : Width of displayed field.
ItemStr Prompt associated with the variable name.

WSRL-GD-02/91 18

PROCEDURE OpenForm(HeadingStr: STRING);

HeadingStr Title for top of form.

PROCEDURE StringItem (StringVal : STRING; width : INTEGER; ItemStr : STRING);

StringVal : String variable name to be used with this field.
ItemStr : Prompt to associate with this variable name.

6.5 Units Bezier and SBezier

These units contain procedures for generating Bezier curves. Bezier curves, which are supported

by GEM Artline but not by GEM Draw, are used for drawing smooth curves through a limited

number of data points. An example of use of PlotBezier can be found in file TESTDSM.PAS

(reproduced within Appendix V). An example of use of SmoothBezier is to be found in file

GRAFTEST.PAS (reproduced within Appendix III).

6.5.1 Data type (Available only with SBEZIER)

DashedLi neComponent = (LongDash, ShortDash, Dot, LongSpace. ShortSpace):

6.5.2 Available procedures

PlotBezier : (Unit Bezier) Plots a Bezier curve.
SmoothBezier : (Unit SBezier) Fits to a smoothing Bezier curve.

SBezier provides a better fit, the lengths of the dashed segments
tend to be more uniform, but it is slower and uses more memory.

6.5.3 Procedure headers

PROCEDURE PlotBezier (Color, NPts, NDashes : INTEGER: GraphKind : GraphType;

VAR x, y, wx, wy; World: INTEGER);

Color : Color of the Bezier curve plot.
NPts : Number of input data points.
NDashes : Number of dashes if dashed curve is required

(= 0 for a continuous curve).
GraphKind : (Linear, Linearlog, LogLinear, Log).
x, y : Arrays containing the (x,y) input curve data.
wx, wy : Work arrays (must be of dimension NPts).
World : The world associated with the Bezier curve.

PROCEDURE SmoothBezier(Color: WORD; NPts, LineType: INTEGER;

GraphKind : GraphType; VAR x, y; World : INTEGER);

19 WSRL-GD-02/91

Color Color of the Bezier curve plot.
NPts : Number of input data points.
LineType 1 - Long dashes and short spaces.

2 - Short dashes and short spaces.
3 - Dots with short spaces.
4 - Medium dashes with short spaces.
5 - Long dash, short space, dot, short space.
6 - Short dashes with long spaces.
7 - Dots with long spaces.

GraphKind (Linear, Linearlog, LogLinear, Log).
x, y Arrays containing the (x,y) input curve data.

6.6 Unit Smooth

This unit is available for smoothing large amounts of noisy curve data. The data values il I 1w
x array must be equally spaced. The procedure SmoothFt2 operates by applying a Fast Fourier
Transform to the data in the y array, followed by a low pass filter. Linear trends are retained I.

Program SMOOTHTEST.PAS (Appendix VI) contains an example of application. In this pro-
gram a sine curve is plotted, random noise is added, and the original curve compared to the
smoothed curve obtained by application of SmoothFt.

6.6.1 Procedure header

PROCEDURE SmoothFt(VAR y; n : INTEGER; Pts : Float):

y : Unsmoothed input and smoothed output y array.
n : Number of elements in array y (maximum = 8192).
Pts : Number of points over which the data is to be smoothed

0 - No Smoothing
> 0.5n - Both data and noise are smoothed

6.7 Unit DSM

Unit DSM, which is useful for smoothing moderate amounts of noisy curve data, is based on
the algorithm ALG547 - Discrete Smoothing Cubic Spline. Credits and references are included
in the Unit source code. An example of use can be found in file TESTDSM.PAS (reproduced
within Appendix V).

Within the DSM procedures, parameters NInterp, zs, ys. b, c and d define the spline. The
procedures should be called in the following order:

1. FitDSm (To evaluate the spline)
2. FitCS (optional)
3. FitDS (optional)
4. FitDDS (optional)

WSRL-GD-02/91 20

6.7.1 Available procedures

FitCS Evaluates a cubic spline at each point in an array.
FitDS Evaluates the first derivative of the cubic spline.
FitDDS Evaluates the second derivative of the cubic spline.
FitDSm Computes the discrete natural cubic spline defined over an interval.

6.7.2 Procedure headers

PROCEDURE FitCS (NPts, Nlnterp : INTEGER; VAR x, y, xs, ys, b, c, d);

NPts Number of points to interpolate.
Nlnterp Number of nodes (x) and data values (y).
x Array of x coordinates for interpolation.
y Returned values of y.
xs Array of floats containing nodes (z[i] < r[i + 1]).
ys Array of floats containing the smoothed values of data y[i].
b Array of floats containing coefficients for terms (t - x[i])

(where t is the interval parameter defined within ALG547).
c Array of floats containing coefficients for terms (t - x[i]) - .

Array of floats containing coefficients for terms (t -[])3

PROCEDURE FitDS (NPts. Nlnterp : INTEGER; VAR x, y. xs. ys. b. c, d1:

NPts Number of points to interpolate.
NInterp Number of nodes (x) and data values (y).
x Array of x coordinates for interpolation.
y Returned values of dy/dx.
xs Array of floats containing nodes (x[i] < z[i + 1]).
ys Array of floats containing the smoothed values of data y[i].
b Array of floats containing coefficients for terms (t - .r[i])

(where t is the interval parameter defined within ALG547).
c Array of floats containing coefficients for terms (t - x[i))2 .
d Array of floats containing coefficients for terms (t - x4i])

3 .

PROCEDURE FItDDS (NPts, Nlnterp: INTEGER; VAR x, y, xs, ys, b, c, d);

NPts Number of points to interpolate.
Nlnterp Number of nodes (x) and data values (y).
x Array of x coordinates for interpolation.

y Returned values of d2y/dz2 .
xs Array of floats containing nodes (z[i] < x[i + 1]).
ys Array of floats containing the smoothed values of data y[i].
b Array of floats containing coefficients for terms (t - x[i])

(where t is the interval parameter defined within ALG547).
c Array of floats containing coefficients for terms (t - x[i])2 .

d Array of floats containing coefficients for terms (t - x[i]) 3 .

21 WSRL-GD-02/91

PROCEDURE FitDSm (h, Rho: Float; n : INTEGER; VAR x, y, Wgs, ys. b, c. d);

h Step size used for discrete cubic spline.
Rho : Positive parameter for varying smoothness of fit.

- Large Rho emphasizes smoothness
- Small Rho emphasizes fitting

n : Number of nodes (x) and data values (y).
x, y : Array of floats values containing nodes (z[i] < r[i + 1]).
Wgs : Array of floats containing weights Wgs[i] corresponding to the

data (x(iI, y[il).
ys : Array of floats containing the smoothed values of data y[i].
b : Array of floats containing coefficients for terms (t - X[iJ)

(where t is the interval parameter defined within ALG547).
c : Array of floats containing coefficients for terms (t - x[i]) 2 .
d : Array of floats containing coefficients for terms (t - x[ij) 3 .

6.8 Unit Coords

This unit contains routines for performing transformations between coordinate systems. A

maximum of 10 worlds and 10 device spaces can be used. Examples of use of th,• unit can be
found throughout the example files given in the appendices to this document.

6.8.1 Available procedures

ClearCoords : Deletes all world and device spaces.
DefineWorld : Defines a world coordinate system. World points can

be mapped into N DC space.

DevCoords : Converts a point in NDC space into device space.
DevX : Converts an x coordinate in NDC space into device space.
DevY : Converts a y coordinate in NDC space into device space.
NDC : Converts a point in world space into NDC space.
NDCX : Converts an x coordinate in World space into NDC space
NDCY : Converts a y coordinate in World space into NDC space
WorldX : Converts an x coordinate in NDC space into world space.
WorldY : Converts a y coordinate in NDC space into world space.

6.8.2 Procedure and function headers

PROCEDURE ClearCoords;

PROCEDURE DefineWorld(VAR World: INTEGER; lIx, Ily, urx, ury Float);

World Index name for new world.
lix, lly : Lower left coordinate of world coordinate space.
urx, ury : Upper right coordinate of world coordinate space.

PROCEDURE DevCoords(Device : INTEGER; u, v : Float; VAR x,v. INTEGER)

Device : Index number for device.
u,v : NDC device coordinates.
x, y : NDC coordinate converted into device coordinates.

WSRL-GD-02/91 22

PROCEDURE DevX(Device: INTEGER; u : Float): INTEGER;

Device : Index number for device.
ii : x coordinate in NDC space.

- returns x coordinate converted to device space.

PROCEDURE DevY(Device : INTEGER; u : Float): INTEGER;

Device Index number for device.
i : y coordinate in NDC space.

- returns y coordinate converted to device space.

PROCEDURE NDC(World : INTEGER; x, y : Float; VAR u, v : Float);

World : Index number for world.
x. y : Point in world coordinate space.
it, v : Point (xy) converted to NDC coordinates.

FUNCTION NDCX(World : INTEGER: x Float) : Float;

World : Index number for world.
x : x value in world space.

- returns x converted to NDC space.

F-UN('TION NDCY(World : INTEGER: y : Float) : Float;

World : Index number for world.
y : y value in world space.

- returns y converted to NDC space.

FUNCTION WorldX(World : INTEGER; x : Float) : Float;

World : Index number for world.
x : x coordinate in NDC space.

- returns x converted to world space.

6.9 Unit Interp

This unit provides procedures 3 for returning the first and second derivatives of a cubic spline.
It also provides a routine for constructing a curve through a given set of data points (where the
second derivative at the endpoints is assumed to be zero). The listing within the test program
TESTMARKER.PAS at Appendix V provides an example of the use of this unit.

6.9.1 Data types and constants

CONST : TNArraySize = 201: (limits array size).
TYPE : TNVector = ARRAY[0..TNArraySize] of Float;

6.9.2 Available procedures

Derivative : Returns the first derivative of a spline.
SecondDerivative : Returns the second derivative of a spline.
CubicSplineFree Constructs a smooth curve through a given set of data points.

IL

23 WSRL-GD-02/91

6.9.3 Procedure headers

PROCEDURE Derivative (NuimPoints : INTEGER: VAR XData; Numlnter INTE;EII:
VAR Xlnter, Ylnter);

NumPoints : Number of data points.
XData Summed Cubic Spline Free.
NumInter Number of points where the derivative is required.
Xlnter : x values where the derivative is required.
Ylnter Derivatihe at xi (i = 1.Numlter).

PROCEDURE SecondDerivative (NumPoints : INTEGER; VAR XData:
Numlnter : INTEGER; VAR Xlnter, Ylnter);

NumPoints Number of data points.
XData Summed Cubic Spline Free.
Numinter Number of points where the derivative is required.
Xlnter x values where the derivative is required.
Ylnter Second derivative at x, (i = 1..Numlter).

PROCEDURE CubicSplineFree (NumPoints : INTEGER: VAR XData. Yl)ata:
Numlnter : INTEGER: VAR Xlnter, Ylnter: VAR Error : BYTE):

NumPoints Number of data points.
XData Input x data values.
YData Input y data values.
NumInter Number of interpolations.
Xlnter x coordinates of points at which to interpolate.
YInter Interpolated values at Xlnter.
Error 0 - No Error.

I - x values of data points not unique.
2 - x values of the data points not in ascending order.

3 NumPoints < 2.

6.10 Unit FloatDef

The purpose of this unit is to allow the user to specify the type Float, either as SINGIE.
DOUBLE or EXTENDED. The default value is SINGLE. The unit must be included with ;IIl
Turbo Pascal code that makes use of the TP/GEM software interface and is edited as reqiired
by the user.

6.11 Unit TypeDef

This unit should be included with all source programs that incorporate any code from the
TP/GEM interface. There are no functions or procedures, only data types and variables.

6.11.1 Data types

PlotArray = ARRAY[l..MaxPt] OF Float;
OutputDisplayType = (Screen, GemFile);
OutputDevicesList = Set of OutputDisplayType;
GemColorMap = ARRAY[0..15] OF INTEGER:
GraphType = (Linear, Log, LogLinear, LinearLog);

WSRL-GD-02/91 24

CONST GemColors : GemColorMap = (0,12,11,14,10,15,13.8,9,4,3,5,2,7,6,1);

6.11.2 Global variables

DeviceList OutputfDevicesList;
ErrorStr : STRING;
ScreenDevice INTEGER;

- Screen device space covered by the specified plot rectangle
FullScreenDevice : INTEGER;

- Device space covered by full screen
GEMDevice INTEGER;

- GEM device space covered by the specified plot rectangle
GEMPage INTEGER;

- Device space covered by full GEM plot area

The user has the option of writing data to the PC screen but not to the GEM output file.
The latter option is often more conveniently accomplished during manipulation within GEM
Draw or GEM Artline. The ScreenDevice variable is useful as an aid for positioning tile
required data on the screen. For example:

MoveTo(DevX(ScreenDeviceO.O)+IODevY(ScreenDevice,1.O)+20);
OutText(Filter Cutoff : 1);
Str(FilterOff:3: 1,WriteStr);
OutText(WriteStr);
OutText(' microns');

will write the required information near to the top left hand corner of the specified plot
rectangle. A number of examples of the application of ScreenDevice appear in Appendix II.

6.12 Unit Defaults

The purpose of this unit is to allow the user to tailor the TP/GEM interface to suit his/her own
personal preferences. Any value of a global variable written into the procedure SetDefaults will
overwrite the default value. Note that the unit in which the variable is defined must be called
under the USES heading within DEFAULTS.PAS which, in turn, must be called within the user
source program. Note further that the values of the global variables may be changed at any
point within the user source program, as illustrated for example within Appendices I to lil.

PROCEDURE SetDefaults;

25 WSRL-GD-02/91

REFERENCES

1. WV. Bohm, G. Farmn and J. Kahmann, "A Survey of Curve and Surface Methods in CA(Al).
Computer Aided Geometric Design 1, 1 (1984).

2. XV.H. Press, B.P. Flannery, S.A. Teukoisky and W.T. Vetterling, Numerical Recipes, the Art
of Scientific Computing, Cambridge University Press (1988).

3. Turbo Pascal Toolbox Numerical Methods, Version 4.0, Borland International, Scotts Vallv.y
CA (1987).

WSRL-GD-02/91 28

27 WSRL-GD-02/91

Appendix I

Test Program: EASYPLT.PAS

This is a simple program designed to illustrate the basic use of the TP/GEM interface, with data imi-
ported from an external data file. Note the example of the change of the global variable AxisC'olor.
This user preference could optionally have been stored in the user defaults unit DEFAULTS.P'AS.
Automatically scaled and user-selected clipped examples of graphical output are included beneath
the code.

PROGRAM EASYPLT;
USES

GRAPH, CRT,
Coords, Axes, Mathlib, Plotlib, Form, FloatDef. Typeflef, Defaults;

TYPE
readf ile = TEXT;

ARRAYSOO = ARRAYEl. .500) of Float;
VAR

ctatafile readf ile;
Time, Response arrayS00;

i, imin, imax, Upta INTEGER;
TSteps. RSteps, Tdecijeals. Rdecimals INTEGER;

Twin. Tuax, Rain, Rmax: Float;
TWorid: INTEGER;

ch :CHAR;
BEGIN {Prograa}

ASSIGN(datafile, 'PLOTODAT');
RESET(datafile);

i := 0;
WHILE NOT EOF(datafile) Do

BEGIN
i := i + 1
READLN(datafile, Timefi), Responsi));

END;

CLOSE(datafile);
upts

Plotting Routines Foliow

FindExtrona(Ti.., Npts, Twin, Thax, imin, imax);
PindExtreua(Response. Ipts, Rain, Raax, imi, imax);
AxisScas('IIE', TSteps, Tamn, Tmax, T~ecimals);
AxisScale(IRESPONSE', RSteps, Rain, Ra, RDecinals);
Define~orld(TVorld,tmin,Rmin,tmax ,Raax);

Set user-defined defaults and the size of the plot rectangle

SetDsfaults;
AxisColor :- LightBlue;
GENStart('EASYPLT.GEM' ,LandscapeO.68);

ScreenStart(0 .86);

WSRL-GD-02/91 28

Drag, label and name axes

Labollaxis(lightgreenTSteps. Tdocinals. World);
LabelYaxis(lightgreen,RSteps,Rdecimals. World);

GemTextSettings(Charter,20);
lanelaxis(lightgreen, 'Time (seconds)');
NameYaxis(l'ghtgreen, 'Response');

Plot curve data

PlotCurve(Yallow, Ipts. Linear. Tine. Response, World);

ch :=Readxey;
PlotEnd;

END.

13-_______________________

12-

7-

5-

4. _____________________

0 1 2 3 4 5 6 7 S 9 10

rme (second)

9.0-

.4-

7j8

7.6-

7.4

7.2

7.0]

2.0 & 0 13.5 4.0 4.5 5.0 L.5 61.0 6.5 7.0 7.5 6.0
r=c (uSOCOW

29 WSRL-GD-02/91

Appendix II

Test Program: MULTIPLT.PAS

This second example is designed to illustrate a number of features of the TP/Gem interface. Thle
code is a significantly modified version of a genuine program and as such, the actual numbers and
plotted curves should not be taken too seriously. Examples of multiple World use, global variable
changes, user-defined labelling, NDC dashed lines connecting curves from different Worlds and
logarithmic axes are all included together with procedures for writing screen data within the plot
rectangle and an application of the unit FORM procedures.

PROGRAM NultiPit;
USES

GRAPH,CRT.
Coords, Axes, Nathlib, PlotLib, SBazier, FloatDef, Form, Typeflef;

TYPE
Array300 aARRAYEI. .300] OF Float;

VAR
ch CHAR;
ym.n yaax, xi. yl, z2, y2, lain, imax, Main, Kaax, Th,
Rq~in, Rqflax. saubdal, lambda2, I q, fqRef. Rqiora,
Rq~ain. Rq~aax, dlambda, fqFixed, lambdaRet, abdaFixed,

RqRsf. RqFixed, EffectiveCutoff, CutoffRef,
CutoffFixed, C1. MCutoffFixed, lambdaCutof I,
WorkFunctjon Float;
i, j, Ipts. iSteps, MSteps, imin, isax, RqNSteps, RqSteps,

Log~orld. Rqvorld. RqMWorld. K~orld, lDecinals, Mflecinals,
RqDecimals, RqKDecizals .INTEGER;

lambda, labdaT, Frac~sambda. Rq. RqM, wz, vy Array300;
MyLabels, TickPoen Array 100;

PROCEDURE LotsOfCalculat ions;

The code in this procedure involves calculation of array data that
is not relevant to illustration of the operation of the TP/GEM

interface. The code is not therefore replicated within this
Appendix.

PROCEDURE DisplayStuffOnScreen;
VAR

ThStr, LowerStr. UpperStr, deltaStr, EnergyStr, ClStr,
Rqstr, CutoffStr, I qStr. laabdaStr STRING;

BEGIN

Title plot and write data

SetColor(Lightcyan);
SetTetJuvtify(L~ftTsxt, BottosText);
SetTextStyle(2, HoriaDir. 4);
NoveTo(Devi(ScreenDevite, 0.0) + 10, DevY(ScreenDevice, 1.0) + 10);
OutTezt('8&ckground T
Str(Tb:6:1. ThStr);
OutTet(ThStr);
OuText('K');

WSRL-GD-02/91 30

Nov.To(DeYX(ScroonDsvice. 0.0) + 10, DevY(ScrssnDevice. 1.0)+30);
OutText('Referonce Wavelength (1)

Str(lambdaft~f:6:3. laubd&Str);
OutTezt(laubdaStr);

OutText(' microns');
Nov*To(DsvZ(Scr*znDsvice. 0.0) + 10, DsvY(ScresnDevice. 1.0) + 40);

OutTezt('Reference Responsivity
Str(RqRef:8:6, Rqstr);
Outrext(ftqstr);
Mo,.To(DevX(Scr**nDevice, 0.0) + 10, DavY(ScreenDevice. 1.0) + S0);

OutText('Effectiva Cutoff Wavelength
Stzr(Cutofftef:5:3, CutoffStr);
OutText (CutoffStr);
OutTsxt(' microns');
NoveTo(DevZ(ScreanDevice, 0.0) + 10, DevY(Screenflsvice, 1.0) + 60);
OutText('fq:)
Str(fqR~f:8:6. IqStr);

Nov*To(DevZ(ScreenDevice, 0.0) + 10, DevY(Screenlsvice, 1.0) + 80);

OutText('Roterence Wavelength (2)

Str(lambdaFixed:S:3, laabdaStr);
Outrezt(laubdaStr);
OutText(' microns');
MoveTo(DevX(Screnlsvice, 0.0) + 10, DevY(Scrsenflevice, 1.0) + 90);

OutTt('Reference Responsivity
Str(RqFixed:8:5. Rqstr);
OutText(Rqstr);
NoveTo(DevX(ScraenDevice. 0.0) + 10, DevY(Screenlevice, 1.0) + 100);
OutText(lEtfactive Cutoff Wavelength
Str(CutoffFiz~d:6:3, CutoffStr);

OutThxt (CutoffStr);
OutText(' microns');
Nov*To(DevI(ScrsszLDevice, 0.0) + 10. DevY(ScreenDevice, 1.0) + 110);

OutTt('fq:)
Str(fqFii~d:8:6. TqSizr);

OutTezt(fqStr);
Nov*To(DevX(Scr,.nLD~vice, 0.0)+ 350, DoYY(Screenlevice, 1.0) + 10);

OutT~xt('Work Function:)

Str(VorkFunction:6:3. EnergyStr);
OutText(EnergyStr);
OutTet(' *y');
No*To(DvX(ScrenDvice. 0.0) + 350. DavY(Screenflevice. 1.0) + 20);

OutTt('Cutoff Wavelength:)
Str(lanbdaCutofl:S:3. CutoffStr);

OutTezt(CutoffStr);
OutText(' micron');
NoveTo(IDev(ScreenDevice. 0.0) + 350, DevY(ScreenLD*Yice. 1.0) + 30);
OutText('CI:)

Str(C1:5:3. ClStr);

OutTt(ClStr);
END;

31 WSRL-GD-02/91

PROCEDURE SetValues;
BEGIN

Th 290;
WorkFunction :=0.219;
C1 : 0.26T;
lambdal 1.0;
lambd&2 6. 5;
dsambda 0.02;

END;
BEGIN

SetValues;
DpenForu&'PtSi Cutoff evaluation');
Floatltea(Th. 1, 'Background temperature (KM :)
Floatlten(WorkFunction, 3. PtSi Work Function :)
Floatltsm(CI. 2, 'PtSi respousivity constant :)

Floatltsn(laubdal, 1, ' Lower Spectral Bound :)
Floatlten(lambda2, 1, ' Upper Spectral Bound :)
Floatlten(dlsabda, 2, ' Spectral Interval :');
CloseFor.;
FormControl :=1;
WHILE (FormControl <> 100) and (FormControl <> 101) DO

BEGIN

CASE FormControl OF
1 GetRealValue(Th);

2 GetftealValuo(VorkFunction);
3 GetftealValue(C1);
4 GetftealValue(lambdal);
5 GetReal Value(laabda2);

6 Getftealyalue(dlambda);
END; {CASE}

END; {WUILE}
Lots~fCalculat ions;
FindExtrana(laubda. Npts. lain. lmax, imi, imax);
FindExtrona(Frac~lsabda. Npts. KMin, Mmax, lani, imax);
FindEztrema(Rq, Npts, Rq~in. RqMax. lani. imax);
FindEztreaa(RqN. Npts. Rq~min. Rq~max, iain, imax);
Azi*Scsle('WAVELENGTU', iSteps. lain, imax, lDeciisals);
£zisScals('FRACTIONAL EZITANCE', MSteps, Main, Kmax, NDecimals);
AxisScale(IPHOTOI RESPONSIVITY', RqSteps, Rq~in., RqMax. Rq~ecimals);
yax : Rqflaz;
LogScals('LOG TEST' .ymin. ymax, 3); (only included as an example of use of)

{LogScals. which would normally be}
{applied in association with a log)

lain .5;{qualifier within Procedure PlotCurve)

liax :=6.0; (These values are user-inspired.)
Maz: 0.25; (overwriting the auto-scaled values'
Rqi~ax 6 .0; (calculated within AxisScale'
RqffStsps :=NSteps;
Rqrtmax . mz
Define~orld(RQWorld. lain, Rq~in, laax. Rqwax);
Dofin*Vorld(MVorld, lain. Main. Imax, Max);
Dsfin*World(3.qXVorld. lain, ftqMmin. Imax. tq~max);

Defin*Vorld(LoS~orld, lain, ym. luax. yaaz);

WSRLL-GD-02/91 32

sot the size of the plot rectangle

GEMStartC'NULTIPLT.GE' .Landscape,O.68);

ScreenStart (0.85);

Labollaia (magenta, l15bps, lDecimals, RAqyorld);

Side :=InSide;

AzisTicks : TwoSidexTicked;

LogYAxis (lightgreen, LogWorld);

Side :=OutSide;
AxisTicks : OneSideTicked;

GesTeitSettlflge(Dtch, 20);

NameXaxis (lightuagenta, 'Vavelength (microns)');

Name~axis (lightgreel. 'LogIO(Photofl Responsivity)');

FOR i:= 1 TO S DO

BEGIN

NyLabals~i) 0.20 + je0.06;

TickPoab{i3 i .240/WyLabelsCi);

END;

GemTsxtSettlgs (Sviss, 17);

VarLabelTop (lightgreel. 5, TickPosn. HyLabels,
2. lain. imax),

Naxeyopkxis(lightmgelta, 'Photon Energy (eV)');

PlotCurve (blue, Epts. Linear, lambda, Frac~lambda,
XWorld);

Smoothlelier(Yellov, Ipto. 0, Linear, lambda, Fracllambda.
li~orld);

Smoothflezier(lightgreen. Epts, 0, Linear, lambda,
Eq. RqWorld);

SmoothBezier(lightred, Epts, 0, Linear, lambda,
RqM. RqlWorld);

Plot dashed lines

IDC(Rq~orld, Cutoffixed , 0.0. x1, yl);

NDC(RqWorld, CutoffFixed, Rqiora, x2, y2);

PlotDaahed~ife(Yellow, Dashed, Haltwidth, x1, yl, %2, y2);

IDC(Rqvorld, lain. Rqlorm. x1. yl);

PlotflashodLifle(YelloV, Dashed, Half width, xl, yl, %2, y
2
);

NDC(H~orld, CutoffFixed, NCutoffFixed, xi, yl);

PlotDaghedLize(YelloV, ShortDashed. Haltvidth, x1, yl, x2, y2);

DisplayStuffOnScreen;
ch :=Readley;
PlotEnd;

END. PIMWAen EIWW (*V)

.46 0.40 0.35 0D.30 .25

j0

&I52. 3 A 2. S. 4A1 4A 4.7 5.0 5.4 5.7 6.0

-hekg -WM

33 WSRL-GD-02/91

Appendix III

Test Program: GRAFTEST.PAS

GRAFTEST is designed to demonstrate the application of the procedure SmoothBezier. For curves
that exhibit high curvatures and a large range of curvatures, SmoothBezier will provide a sig-
nificantly better fit than PlotBezier at the expense of slower operation and a greater mlernory
requirement. Note that the choice of inside ticks with unit length will produce a complete grid.

{

Program to demonstrate plotting routines. Plots frequency response
curves of the form:
20LOG 1.0 / (1.0 - (V/Wn)-2 + 2*ZETA*(W/wn)) v LOG(W/Wn)

for W/Wn = 0.1..10.0
Separate curves for ZETA = 0.1,0.2,0.4,0.6,1.0

PROGRAM GrafTest;
USES Graph, Coords, PlotLib, SBezier, Axes, MathLib, FloatDef, TypeDef;
TYPE

ZTabType = ARRAY[. .5] OF Float;

CONST
ZTab : ZTabType = (0.1,0.2,0.4,0.6,1.0);

NPoints = 80;
VAR

ijPlotgorld : INTEGER;
Zeta,uu,dx.XMin.XMax : Float;
X,Y,Workg,WorkY : ARRAYCO..100) OF Float;
U : ARRAY[1..2) OF Float; {Coaplex Number)

BEGIN
Min: 0.1;

XMax : 10.0;

Doefineuorld(PlotWorld,XMin,-40,XMax,20);
{

Creates a new world referenced by "PlotWorld"
World is bounded by (Xmin. -40) on the lower left corner and

by (XMax, 20) on the upper right.
)

GemStart('GRAFTEST.GEN',Landscape,0.75);

Enables output to GEM meta-file GRAFTEST.GEM. Orientation is landscape
and 0.76 of the plot area is used for plotting to.

)

GemWidth(S); MOraws GEM lines S points wide)

ScreenStart(0.75); {Plots to 0.75 of the available screen)
TickLen := 1.0; {length of ticks on the axis)

Side := Inside; (plot ticks on inside of plot area (normally outside))

GeiTextSettings(Charter, 12); (Text output for gem is Charter font, 12 Point)
LogXAzis(LightfagentaPlotWorld); fDraws I Axis in light magenta colour within

World defined by PlotWorld)
LabelYAxis(Light~agenta,6,0,PlotWorld); (Draws Y Axis in light magenta

in world defined by PlotWorld.

6 Ticks and numbers. So decimals}

WSRL-GD-02/91 34

dx :=(Log1O(XMax) - LoglO(X~jn)) / IPoints;

FOR J 1= TO 5 DO
BEGIN

Zeta ZTabEJl;
FOR i 0 TO IPoints DO

BEGIN
X~i) Power(1O.i adx: + LoglOCINin));

U[1] 01.0 - x~i) XfiJ);
U[21 :2.0 * Zeta* *~]

uu UCi] * U13 + 13(2) * 1(2);
13(1) U1i) / uu;
U[22) 1(2) / uu;
YCA) 20 * LoglO(SQRT(U(1)*U(1) + U132 U[2]));

END;
Sisoothfezier(Cyan,lPoints+1, j. LogLinear,x,y,PlotWorld);

Draws a smoothed bezier curve in Plot~orld
j sets the line type

Log X axis, Linear Y.
x, y contain data points

PlotCurve(LightRed,NPoints ,LogLinear,x,yPlotWorld);

Draws the curve through x and y.
Colour is light red,
NPoints will be plotted.
Log X axis, Linear Y axis.

END;

READLN;
PlotEnd; (Ends screen graphics and closes GEN smeta-file)
WRITELN('Nonconwergance ',NonConv);
WRITELN(ErrorStr);

END.

10 1

0K

.10

35 WSRL-GD-02/91

Appendix IV

Test Program: TESTDSM.PAS

TESTDSM provides examples of the use of the discrete smoothing procedures with different vahiv.
chosen for the smoothing parameter. The procedure PlotMarkers is used to mark the individual

points defining the original data set.

PROGRAM DSNTest;
USES GraphFloatDlef, TypeDef, DSM,Coords,PlotLib,Axes,Bezier, Crt;
VAR

x,y,b,c,d.ys,wgs : ARRAY[O..10 OF Float;
u,v,dv,wx,y ARRAYCO...100 OF Float;

i,PlotWorld INTEGER;
h,Rho : Float;
Ch : char;

BEGIN
(Assign x y and Wgs arrays initial values)
xC0: 0.0; y[o1 3.0; Wgs[O] 2.0;
x[i 1.0; y[13 1.0; wgs[1] 1.0;
x[2] 2.0; y[23 2.0; Wgs[2] 1.0;
x[33 3.0; y[33 6.0; Wgs[3) . 1.5;
x[43 4.0; y4]: 5.5; Wgsf4] 1.0;
x[s) 5.0; y[53 6.0; Wgs[5:= 1.0;
z[6) 6.0; y[63 7.0; Wgs(6] 1.5;
z[7) 7.0; y[7: 5.5; Wgs[73 1.5;

x[8] 8.0; yC8: 4.0; WgsCB] := 1.0;
XC9) 9.0; y[9] 3.5; Wgs]9) 1.0;
x[101 10.0; y['10 := 1.0; Wgs[10 := 2.0;

FOR i 0 TO 100 DO
ui]: i * 0.1; {Initialise u array)

h := 0.1;
Rho := 0.00001;
ScreenStart(0.75); {Start screen graphics}

GemStart('TESTDSM.GEN',Landscape,0.65) ;{Start Gem graphics)
Defineorld(PlotWorldO.O,O.0,10. O .O); (Define world PlotWorldj
LabelXAxis(Green.10,O,Plot~orld); (Assign ticks and numbers to X and Y)
LabelYAxis(Green,10,0,PlotWorld); (axes)
PlotNarkers(Blua,Star,O.02,11,Linear,x,y,PlotWorld); (Plot stars as mark ers}

(at data points for x and y}
NameTopAxis(Nagenta,'FitDS'); (Labels top axis with "FitDSM"}

FOR i := 1 TO 5 DO (five Discrete smoothing curves with different emphasis)
(on smoothing (i=) to curve fitting (i=5)}

BEGIN
Rho := Rho * 10; (Rho determines the emphasis - see manual and above)
FitDSN(h.Rho,ll.x,y,Wgsys,b,c,d); (compute discrete cubic spline}
FitCS(11,101,u,v,x,ys.b,c,d); (Evaluate cubic spline at each point}
FitOS(ll,lOl.u,dv,x,ys,b.c,d);{Evaluate first derivative of cubic)

(spline at each point (not plotted)l
PlotCurve(i, 101, Linear, u, v, Plotgorld); (Plot the new curve)

END;

WSRL-GD-02/91 36

PlotBezier(Yellow,101,0,Linearu,v,wx,vyPlotWorld);
{

Plot the final curve using beziers.
Colour is Yellow.

Plots 101 points, No dashes (NDashes = 0).
Plot is against a linear axis.

Curve is plotted through points defined by arrays u and v.
wx and wy are working arrays. These are used by PlotBezier.
Curve is plotted in world defined by PlotWorld.

}
While not KeyPressed Do;
Ch := ReadKey; {clear the keyboard buffer}

PlotEnd;
END.

F~tDSM
10-

7O
9.

6_

5.

4_

3.

2-

1.

0 0 1, 2 3 4 5 6 7 e 90 10

LS

I I

37 WSRL-GD-02/91

Appendix V

Test Program: TESTMARKER.PAS

PROGRAM TestMarker;
USES Graph,PlotLib,FloatDefTypeDef, Axes,Coords,Interp;
VAR

x,y : TIvector;
xx,yy : ARRAYCO..200) OF Float;
i.PlotWorld : INTEGER;
Error BYTE;

BEGIN
FOR i 0 TO 10 DO

BEGIN
x[i+1] i * 0.1;
y[i+1J x[i+t)*x[i+1);

END;

FOR i := 0 TO 100 DO xx[i] := i * 0.01;
CubicSplineFree(ll,x,y.101,xx.yy,Error);
{

takes 11 data points from arrays x and y and returns them

as 101 data points in arrays xx and yy.
}

ScreenStart(0.75);
{

Initialise screen graphics using 0.75 of the screen area
}
GemStart(TESTNARK.GEM',Portrait,0.70);
{

Initialise GEM plotting. Orientation Portrait, uses 0.7 of the plot
area. Gem output will be sent to file TEST.GEM

}
DefineWorld(PlotWorld,0.0,0.0,1.0,1.0);
{

Define a world indexed by PlotWorld.
lower left is (0,0), upper right (i, 1)

}
LabelXAxis(Magenta,10,1,PlotWorld);
{
Draw 10 ticks and numbers in magenta along x axis. colour is magenta.
Displays I der.imal point. Drawn in world defined by PlotWorld.

LabelYAxis(Magenta,10,1,PlotWorld);
{

Draw 10 ticks and numbers in magenta along y axis. colour is magenta.
Displays one decimal point. Drawn in world defined by PlotWorld.

I
PlotCurve(Cyan,11,Linear,x(1ly[1],PlotWorld);
{
Draws a cyan curve of x vs y against a linear axis. Curve is drawn in
world defined by PlotWorld.

3,

WSRL-GD-02/91 38

PlotHarkers(LightMagenta.Plus.0.02,11.Linear,x[1] ,y[l] ,PlotWorld);

Draws a "+" as a marker at each of the data points described by arrays
x and y. Markers are light magenta, drawn in world PlotWorld against
a linear axis.
Plots 11 Markers at scale 0.02 of normal size of standard device

}

PlotCurve(Green,101.Linear,xx,yy,PlotWorld);

As with above PlotCurve only plots xx and yy arrays which were returned
by CubicSplineFree. Careful examination shows the difference between
the smoothed curve and the plotted original data.

}

READLN;
PlotEnd; {end screen and gem graphics)

END.

1.0

0.9

0.8-

0.7-

a.&

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 1.0

39 WSRL-GD-02/91

Appendix VI

Test Program: SMOOTHTEST.PAS

{ PROGRAM to test the smoothing routine Smoothft. }
(eeeesesese*sessseeeeeeseeeosesee$**$$*ss*$ee**es*sesssesesee*

PROGRAM SmoothTest;
USES GraphSmooth.PlotLib, Coords, FloatDoefTypeDef, Axes;
VAR

x,y,z : ARRAY[I..1024] OF Float;
dx : Float;
i,PlotWorld : INTEGER;

BEGIN
RANDOMIZE; (Seed random number generator)
dx := 0.01;
FOR i := 0 TO 1000 DO

BEGIN
x[i+i : i * dx;
z[i+i) SIN(x[i+1]); (sine values, x versus z}
yi+l: z[i+l + 0.5 * (Random-OS.); (sine values from z with random)

(noise added)

END;
GEMStart('SMOTEST.GEN',Landscape,O.68);
ScreenStart(0.76); {Start Screen Graphics
DefineWorld(PlotWorld,O,-2,10,2); (Define a world to plot in)
LabelXAxis(Red,10,0,PlotWorld); (Put numbers and ticks on X axis)
LabelYAxis(Red,4,0,PlotWorld); (Put numbers and ticks on Y axis)
PlotCurvs(Magenta,1001,Linear,x.zPlotWorld); (Plot sine curve x vs z
PlotCurve(Red,1001,Linearx,y,PlotWorld); (Plot sine curve with "noise")
Smoothft(y,1001.100);
{

takes array y for smoothing.
smooths 1001 points,
smooths over 100 points.

I
PlotCurve(Green,1001,Linear,x,y.PlotWorld); (Plots the smoothed curve)

(returned in y)
READLN;
PlotEnd; (End screen graphics)

END.

0 1

02 1 2 3 4 5 1 7 8 9 10__

WSRL-GD-C2/91 40

Appendix VII

Test Program: FORMTEST.PAS

PROGRAM FormTest;
USES

Crt, Form, FloatDsf;
VAR

SomeNumber INTEGER;
Lambdal, Lambda2, DLambda,
Tb, CutOn, WorkFunction, C1 Float;
astring String;

PROCEDURE SetValues;
BEGIN

Tb : 290;
WorkFunction 0.213429;
C1 -0.267E-09;
CutOn 3.4;
Lambdal : 1.0;
Lambda2 6.5;
DLambda 0.02;
SomeNumber 8;
astring := 'Hello World';

END;
PROCEDURE DisplayForm;

This Procedure will set up the screen display for a desired input form.
Procedures used are -

OpenForm - Will display at the top of the screen the desired heading.
The heading is passed as a parameter within quotes.

AdvanceLine - Allows a blank line to be inserted on screen.
CloseForm - Displays a tooter for the input form. It displays the

message 'Press PgDn OR ESC to Accept Values'.
FloatItem,
IntegerItem, Used for placing prompts on screen, Stating what variables
StringItem are associated with each prompt and the number of decimal

points to be displayed with each variable
- Call procedure FloatItem, IntegerItem or StringItem depending
upon what sort of data item is on a given line.

- Parameters to the function calls are (in order)
1. Variable to store the input data.
2. lumber of Decimal Points to display. For Integer and String

Values this number is ignored.
3. The prompt to appear for the value at a given line.

Note that the prompt will commence in Column 5. The cursor will
be placed one space after the end of the prompt.

A form should be built up in the following manner
1 - OpenForm('Form Heading');
2 - FloatItem
or IntegerItem
or StringItem

41 WSRL-GD-02/91

These should appear on each line where there will be
an input prompt. They may be interspersed with a call to

the AdvanceLine procedure in order to improve readability
or group related items (or both). They should be in the
order data would normally be entered at the prompts

3 - CloseForm;

4 - Having built up the screen it is necessary to add the code
to read the data values.
To do this code must be inserted between the beginning and end

of the Case Statement.
It takes the following format

FormControl := 1; or whichever field cursor goes in first
Case FormControl of
--- Start inserting code here as needed ---
I : GetRealValue(Tb);
2 GetlntegerValue(C2);

N GetStringValue(InputString);
--- after the last prompt no further code is required ---

End;
Each prompt must be assigned a number which corresponds to
the position of the prompt in the form layout defined above.
First Prompt is 1
Second is 2

and so on. The number MUST be followed by the ':' character.
note that the 'Get' procedures accept parameters which
correspond to the variables defined above

S - The form should now be complete. To run it, call DisplayForm from

your application.
}

BEGIN
OpenForm(' PtSi CUTOFF EVALUATION');
FloatItem(Th, 1, ' Background Temperature (K):');
Floatltem(WorkFunction, 3, ' PtSi Work Function (eV) :');
FloatItem(Cl, 2, ' PtSi Responsivity Constant C1 :');
AdvanceLine;

FloatItem(CutOn. 1, ' Cuton Wavelength (microns) :');

Floatltem(Labdal, 1, ' Lower Spectral Bound (microns) :');
FloatItem(Lambda2, 1, ' Upper Spectral Bound (microns) :2);
Floatltem(DLambda, 2, ' Required Step Size (microns) :');
AdvanceLine;

Integerltem(SomeNumber, 2, ' Some Number (< 10) :');

AdvanceLine;
Stringltem(astring 0, ' Enter a String here :');
CloseForm;

WSRL-GD-02/91 42

FormControl :=1;

While (FormControl <> 100) and (FormCotrol <> 101) Do

Begin
Case FormControl of
I GetftealVlue(tb);
2 GetRealfalue(VorkFuaction);
3 GetftealValuo(Cl);
4 G~tlealyalue(Cut0fl);
6 Get~ealValue(Laubdal);
6 GetRealValue(Lambda2);
7 GetftealValue(DMambda);

8 Begin (Example of validity checking)

GetlategerValue (SomeNumber);

IF SomeNumber >= 10 THEN (Value out of range)

BEGIN
GoToXY(I.24);
Write('This number should be less than 10');

FormControl :=8;

END

ELSE (Ensure Error message disappears)

BEGIN
GoToXY(10,24);
Write(,

END;
End;

9 GetStringValue(astring);

END; {Case)
End;

END;
BEGIN

SetValues;
DisplayForm;

END.

WSRL-GD-02/91

DISTRIBUTION No. of Co!iv,

DEPARTMENT OF DEFENCE

Defence Science and Technology Organisation

Chief Defence Scientist
First Assistant Secretary, Science Policy
Director General Science & Technology Programs
Counsellor Defence Science London Control Sheet Onl.y
Counsellor Defence Science Washington Control Sheet Only
Defence Science Representative. Bangkok Control Sheet Only
Scientific Adviser, Defence Research Centre, Kuala Lumpur Control Sheet OiyV

Aeronautical Research Laboratory

Director, Aeronautical Research Laboratory
Chief, Flight Mechanics and Propulsion Division
Chief, Aircraft Materials Division
Chief, Aircraft Structures Division
Chief, Aircraft Systems Division

Electronics Research Laboratory

Director, Electronics Research Laboratory
Chief, Communications Division
Chief, Electronic Warfare Division
Chief, Information Technology Division

Materials Research Laboratory

Director. Materials Research Laboratory
Chief, Explosives Division
Chief, Materials Division
Chief, Protective Chemistry Division
Chief, Underwater Weapon and Countermeasure Systems Division
Chief, Scientific Services Division
Chief, Engineering Support Division

Surveillance Research Laboratory

Director, Surveillance Research Laboratory
Chief, High Frequency Radar Division
Chief, Microwave Radar Division
Chief, Optoelectronics Division

Weapons Systems Research Laboratory

Director, Weapons Systems Research Laboratory
Chief, Combat Systems Division
Dr M. Davies
Chief, Guided Weapons Division
Chief, Maritime Systems Division
Chief, Ordnance Systems Division
Research Leader, Guided Weapons
Research Leader, Seeker Technology
Head, Advanced Seekers
Head, Dynamics and Trials
Head, Guidance, Control and Simulation

Head, Guided Weapon Projects

WSRL-GD-02/91

Head, Guided Weapons Engineering
Head, Guided Weapoab Project .
Head, Radio Frequency Seekers
Head, System Performance Analysis 1
Mr R.D. Anderson
Dr D. Bucco
Mr S.C.B. Garner 1
Mr D.J. Hards 1
Mr R.P. Johnson 1
Mr J.P. Owen
Dr R.L. Pope 1
Dr M.B. Pszczel 1
Mr J. Repo
Mr Scott G. Simmonds
Mr GB. Thamm 1
Mr R.M. Thamm 1
Dr O.M. Williams 1

Scientific Adviser. Defence Intelligence Organisation 1
Director of Departmental Publications, for AGPS

Air Office

Air Force Scientific Adviser

Navy Office

Navy Scientific Adviser Control
Sheet Only

Army Office

Army Scientific Adviser I

Libraries and Information Services
Defence Library, Technical Reports Centre. Campbell Park I
Library, Materials Research Laboratory
Manager, Document Exchange Centre. Defence Information Services Branch 1
National Library of Australia I
United Kingdom, Defence Research Information Centre 2
Canada, Director Scientific Information Services I
New Zealand, Ministry of Defence I
United States, Defense Technical Information Center 2Library, Defence Science & Technology Organisation Salisbury 2
Australian Defence Force Academy Library 1
Library. DSD I
British Library, Document Supply Centre I
.Spares

11
Total No. of Copies 80

DOCUMENT CONTROL DATA SHEET

Security classification of this page UNCLASSIFIED

'DOCUMENT NUMBERS 2 1SECURITY CLASSIFICATION
A a. Complete Unclassified

AR AR-006-485 Document:
Number: b. Title in Unclassified

Isolation :

Series WSRL-GD-02/91 c. Summary in Unclassified
Number: Isolation:

3Oe DOWNGRADING / DELIMITING INSTRUCTIONSOther

Numbers:

4 TITLE

TURBO PASCAL/GEM SOFTWARE INTERFACE FOR SCIENTIFIC GRAPH
PREPARATION

5 PERSONAL AUTHOR (S) 6 DOCUMENT DATE
April 1991

R.M. Thamm,
April_1991

D.A. Green and 7 7. 1 TOTAL NUMBER
O.M. Williams 7 OF PAGES 42

7.2 NUMBER OF
i REFERENCES 3

8,8.1 CORPORATE AUTHOR (S) r9 REFERENCE NUMBERS

Weapons Systems Research Laboratory [a. Task:
b. Sponsoring Agency:

8.2 DOCUMENT SERIES 10 COST CODE
and NUMBER

General Document
02/91

IMPRINT (Publishing organisation) 12 COMPUTER PROGRAM (S)
S (Titlle (a) and language (a))

Defence Science and Technology
.....

Organisation

13 1 RELEASE LIMITATIONS (of the document)

Approved for Public Release.

Security classification of this page: UNCLASSIFIED

Security classification of this page UNCLASSIFIED

14 , ANNOUNCEMENT LIMITATIONS (of the information on these pages) -

No limitations

15 DESCRIPTORS 1 16 'COSATI CODES

a. EJC Thesaurus Graphs
Terms Turbo Pascal (programming language) 1205

b. Non -Thesaurus
Terms GEM software

Scientific graph preparation

17 SUMMARY OR ABSTRACT

(if this is security classified, the announcement of this report will be similarly classified)

(U) This document represents a user manual for the Turbo Pascal/GEM software interface
that has been developed recently within Guided Weapons Division. The interface has been
developed primarily to enable Turbo Pascal programmer to replicate their softcopy
graphical output in high quality hardcopy form. The output from the interface is a GEM
file that can be edited as required within either GEM Draw or GEM Artline, prior to
generation of a PostScript file. A number of mathematical procedures have been included
in order to extend the capabilities of Turbo Pascal, together with a useful library of curve
fitting procedures. The interface also incorporates a form filling technique for versatile data
entry at any point within a Turbo Pascal program. A detailed description of all procedures
and functions is included together with the code and graphical output from a number of test
programs designed to illustrate the capabilities of the interface.

Security classification of this page: UNCLASSIFIED

